Mathias Brandewinder on .NET, F#, VSTO and Excel development, and quantitative analysis / machine learning.
by Mathias 8. August 2015 12:42

A couple of weeks ago, I came across this blog post by Steve Shogren, which looks at various programming languages, and attempts to define a “language safety score”, by taking into account a list of language criteria (Are nulls allowed? Can variables be mutated? And so on), aggregating them into an overall safety score – and finally looking for whether the resulting score was a reasonable predictor for the observed bug rate across various projects.

I thought this was an interesting idea. However, I also had reservations on the methodology. Picking a somewhat arbitrary list of criteria, giving them indiscriminately the same weight, and summing them up, didn’t seem to me like the most effective approach – especially given that Steve had already collected a nice dataset. If the goal is to identify which language features best predict how buggy the code will be, why not start from there, and build a model which attempts to predict the bug rate based on language features?

So I decided to give it a shot, and build a quick-and-dirty logistic regression model. In a nutshell, logistic regression attempts to model the probability of observing an event, based on a set of criteria / features. A prototypical application would be in medicine, trying to predict, for instance, the chances of developing a disease, given patient characteristics. In our case, the disease is a bug, and the patient a code base. We’ll use the criteria listed by Steve as potential predictors, and, as a nice side-product of logistic regression, we will get a quantification of how important each of the criteria is in predicting the bug rate.

I’ll discuss later some potential issues with the approach; for now, let’s build a model, and see where that leads us. I lifted the data from Steve’s post (hopefully without typos), with one minor modification: instead of scoring criteria as 1, 0 or –1, I just retained 1 or 0 (it’s there or it’s not there), and prepared an F# script, using the Accord framework to run my logistic regression.

Note: the entire script is here as a Gist.

#I @"../packages"
#r @"Accord.3.0.1-alpha\lib\net45\Accord.dll"
#r @"Accord.MachineLearning.3.0.1-alpha\lib\net45\Accord.MachineLearning.dll"
#r @"Accord.Math.3.0.1-alpha\lib\net45\Accord.Math.dll"
#r @"Accord.Statistics.3.0.1-alpha\lib\net45\Accord.Statistics.dll"

let language, bugrate, criteria = 
    [|  "F#",           0.023486288,    [|1.;1.;1.;0.;1.;1.;1.;0.;0.;0.;1.;1.;1.;0.|]
        "Haskell",      0.015551204,    [|1.;1.;1.;0.;1.;1.;1.;1.;1.;0.;1.;1.;0.;1.|]
        "Javascript",   0.039445132,    [|0.;0.;0.;0.;0.;0.;0.;0.;0.;0.;1.;0.;1.;0.|] 
        "CoffeeScript", 0.047242288,    [|0.;0.;0.;0.;0.;0.;0.;0.;0.;0.;1.;0.;1.;0.|] 
        "Clojure",      0.011503478,    [|0.;1.;0.;0.;0.;0.;1.;0.;1.;1.;1.;0.;0.;0.|] 
        "C#",           0.03261284,     [|0.;0.;1.;0.;0.;1.;1.;0.;0.;0.;1.;0.;1.;0.|] 
        "Python",       0.02531419,     [|0.;0.;0.;0.;0.;0.;0.;0.;0.;0.;1.;0.;1.;0.|] 
        "Java",         0.032567736,    [|0.;0.;0.;0.;0.;0.;0.;0.;0.;0.;1.;0.;1.;0.|] 
        "Ruby",         0.020303702,    [|0.;0.;0.;0.;0.;0.;0.;0.;0.;0.;1.;0.;1.;0.|] 
        "Scala",        0.01904762,     [|1.;1.;1.;0.;1.;1.;1.;0.;0.;0.;1.;0.;0.;0.|] 
        "Go",           0.024698375,    [|0.;0.;1.;0.;0.;1.;1.;0.;0.;0.;1.;0.;1.;0.|] 
        "PHP",          0.031669293,    [|0.;0.;0.;0.;0.;0.;0.;0.;0.;0.;1.;0.;1.;0.|] |]
    |> Array.unzip3

open Accord.Statistics.Models.Regression
open Accord.Statistics.Models.Regression.Fitting 

let features = 14
let model = LogisticRegression(features)
let learner = LogisticGradientDescent(model)

let rec learn () = 
    let delta = learner.Run(criteria, bugrate)
    if delta > 0.0001
    then learn ()
    else ignore ()

learn () |> ignore

And we are done – we have trained a model to predict the bug rate, based on our 14 criteria. How is this working? Let’s find out:

for i in 0 .. (language.Length - 1) do    
    let lang = language.[i]
    let predicted = model.Compute(criteria.[i])
    let real = bugrate.[i]
    printfn "%16s Real: %.3f Pred: %.3f" lang real predicted

              F# Real: 0.023 Pred: 0.023
         Haskell Real: 0.016 Pred: 0.016
      Javascript Real: 0.039 Pred: 0.033
    CoffeeScript Real: 0.047 Pred: 0.033
         Clojure Real: 0.012 Pred: 0.011
              C# Real: 0.033 Pred: 0.029
          Python Real: 0.025 Pred: 0.033
            Java Real: 0.033 Pred: 0.033
            Ruby Real: 0.020 Pred: 0.033
           Scala Real: 0.019 Pred: 0.020
              Go Real: 0.025 Pred: 0.029
             PHP Real: 0.032 Pred: 0.033

Looks pretty good. Let’s confirm that with a chart, using FSharp.Charting:

#load "FSharp.Charting.0.90.12\FSharp.Charting.fsx"
open FSharp.Charting

let last = language.Length - 1

Chart.Combine [
    Chart.Line ([ for i in 0 .. last -> bugrate.[i]], "Real", Labels=language)
    Chart.Line ([ for i in 0 .. last -> model.Compute(criteria.[i])], "Pred") ] 
|> Chart.WithLegend()


What criteria did our model identify as predictors for bugs? Let’s find out.

let criteriaNames = [|
    "Null Variable Usage"
    "Null List Iteration"
    "Prevent Variable Reuse"
    "Ensure List Element Exists"
    "Safe Type Casting"
    "Passing Wrong Type"
    "Misspelled Method"
    "Missing Enum Value"
    "Variable Mutation"
    "Prevent Deadlocks"
    "Memory Deallocation"
    "Tail Call Optimization"
    "Guaranteed Code Evaluation"
    "Functional Purity" |]    
for i in 0 .. (features - 1) do 
    let name = criteriaNames.[i]
    let wald = model.GetWaldTest(i)
    let odds = model.GetOddsRatio(i)
    (printfn "%28s odds: %4.2f significant: %b" name odds wald.Significant)

         Null Variable Usage odds:  0.22 significant: true
         Null List Iteration odds:  0.86 significant: true
      Prevent Variable Reuse odds:  0.64 significant: true
  Ensure List Element Exists odds:  1.05 significant: true
           Safe Type Casting odds:  1.00 significant: false
          Passing Wrong Type odds:  0.86 significant: true
           Misspelled Method odds:  1.05 significant: true
          Missing Enum Value odds:  0.78 significant: true
           Variable Mutation odds:  0.86 significant: true
           Prevent Deadlocks odds:  0.64 significant: true
         Memory Deallocation odds:  0.74 significant: true
      Tail Call Optimization odds:  0.22 significant: true
  Guaranteed Code Evaluation odds:  1.71 significant: true
           Functional Purity odds:  0.69 significant: true

How should you read this? The first output, the odds ratio, describes how much more likely it is to observe success than failure when that criterion is active. In our case, success means “having a bug”, so for instance, if your language prevents using nulls, you’d expect 1.0 / 0.22 = 4.5 times less chances to write bugs. In other words, if the odds are close to 1.0, the criterion doesn’t make much of a difference. The closer to zero it is, the lower the predicted bug count, and vice-versa.

Conclusions and caveats

The 3 most significant predictors of a low bug rate are, in order, no nulls, tail calls optimization, and (to a much lesser degree) lazy evaluation. After that, we have honorable scores for avoiding variable reuse, preventing deadlocks, and functional purity.

So… what’s the bottom line? First off, just based on the bug rates alone, it seems that using functional languages would be a safer bet than Javascript (and CoffeeScript) to avoid bugs.

Then, now would be a good time to reiterate that this is a quick-and-dirty analysis. Specifically, there are some clear issues with the dataset. First, we are fitting 12 languages on 14 criteria – that’s not much to go on. On top of that, there is some data redundancy. None of the languages in our sample has “ensure list element exists” (4th column is filled with zeroes), and all of them guarantee memory de-allocation (11th column filled with ones). I suspect there is some additional redundancy, because of the similarity between the columns.

Note: another interesting discussion would be whether the selected criteria properly cover the differences between languages. I chose to not go into that, and focus strictly on using the data as-is.

I ran the model again, dropping the 2 columns that contain no information; while this doesn’t change the predictions of the model, it does impact a bit the weight of each criterion. The results, while similar, do show some differences:

("Null Variable Usage", 0.0743885639)
("Functional Purity", 0.4565632287)
("Prevent Variable Reuse", 0.5367456237)
("Prevent Deadlocks", 0.5374379877)
("Tail Call Optimization", 0.7028982809)
("Missing Enum Value", 0.7539575884)
("Null List Iteration", 0.7636177784)
("Passing Wrong Type", 0.7636177784)
("Variable Mutation", 0.7646027916)
("Safe Type Casting", 1.072641105)
("Misspelled Method", 1.072641105)
("Guaranteed Code Evaluation", 2.518831684)

Another piece of information I didn’t use is how many commits were taken into consideration. This matters, because the information gathered for PHP is across 10 times more commits than F#, for instance. It wouldn’t be very hard to do – instead of regressing against the bug rate, we could count the clean and buggy commits per language, and proceed along the lines of the last example described here.

In spite of these issues, I think this constitutes a better base to construct a language score index. Rather than picking criteria by hand and giving them arbitrary weights, let the data speak. Measure how well each of them explains defects, and use that as a basis to determine their relative importance.

That’s it for today! Big thanks to Steve Shogren for a stimulating post, and for making the data available. And again, you can find the script here as a Gist. If you have comments or questions, ping me on Twitter!

by Mathias 15. February 2014 12:51

My favorite column in MSDN Magazine is Test Run; it was originally focused on testing, but the author, James McCaffrey, has been focusing lately on topics revolving around numeric optimization and machine learning, presenting a variety of methods and approaches. I quite enjoy his work, with one minor gripe –his examples are all coded in C#, which in my opinion is really too bad, because the algorithms would gain much clarity if written in F# instead.

Back in June 2013, he published a piece on Amoeba Method Optimization using C#. I hadn’t seen that approach before, and found it intriguing. I also found the C# code a bit too hairy for my feeble brain to follow, so I decided to rewrite it in F#.

In a nutshell, the Amoeba approach is a heuristic to find the minimum of a function. Its proper respectable name is the Nelder-Nead method. The reason it is also called the Amoeba method is because of the way the algorithm works: in its simple form, it starts from a triangle, the “Amoeba”; at each step, the Amoeba “probes” the value of 3 points in its neighborhood, and moves based on how much better the new points are. As a result, the triangle is iteratively updated, and behaves a bit like an Amoeba moving on a surface.

Before going into the actual details of the algorithm, here is how my final result looks like. You can find the entire code here on GitHub, with some usage examples in the Sample.fsx script file. Let’s demo the code in action: in a script file, we load the Amoeba code, and use the same function the article does, the Rosenbrock function. We transform the function a bit, so that it takes a Point (an alias for an Array of floats, essentially a vector) as an input, and pass it to the solve function, with the domain where we want to search, in that case, [ –10.0; 10.0 ] for both x and y:

#load "Amoeba.fs"

open Amoeba
open Amoeba.Solver

let g (x:float) y =
    100. * pown (y - x * x) 2 + pown (1. - x) 2

let testFunction (x:Point) =
    g x.[0] x.[1]

solve Default [| (-10.,10.); (-10.,10.) |] testFunction 1000

Running this in the F# interactive window should produce the following:

val it : Solution = (0.0, [|1.0; 1.0|])

The algorithm properly identified that the minimum is 0, for a value of x = 1.0 and y = 1.0. Note that results may vary: this is a heuristic, which starts with a random initial amoeba, so each run could produce slightly different results, and might at times epically fail.


by Mathias 26. May 2013 09:06

I got interested in the following question lately: given a data set of examples with some continuous-valued features and discrete classes, what’s a good way to reduce the continuous features into a set of discrete values?

What makes this question interesting? One very specific reason is that some machine learning algorithms, like Decision Trees, require discrete features. As a result, potentially informative data has to be discarded. For example, consider the Titanic dataset: we know the age of passengers of the Titanic, or how much they paid for their ticket. To use these features, we would need to reduce them to a set of states, like “Old/Young” or “Cheap/Medium/Expensive” – but how can we determine what states are appropriate, and what values separate them?

More generally, it’s easier to reason about a handful of cases than a continuous variable – and it’s also more convenient computationally to represent information as a finite set states.

So how could we go about identifying a reasonable way to partition a continuous variable into a handful of informative, representative states?

In the context of a classification problem, what we are interested in is whether the states provide information with respect to the Classes we are trying to recognize. As far as I can tell from my cursory review of what’s out there, the main approaches use either Chi-Square tests or Entropy to achieve that goal. I’ll leave aside Chi-Square based approaches for today, and look into the Recursive Minimal Entropy Partitioning algorithm proposed by Fayyad & Irani in 1993.

The algorithm idea

The algorithm hinges on two key ideas:

  • Data should be split into intervals that maximize the information, measured by Entropy,
  • Partitioning should not be too fine-grained, to avoid over-fitting.

The first part is classic: given a data set, split in two halves, based on whether the continuous value is above or below the “splitting value”, and compute the gain in entropy. Out of all possibly splitting values, take the one that generates the best gain – and repeat in a recursive fashion.

Let’s illustrate on an artificial example – our output can take 2 values, Yes or No, and we have one continuous-valued feature:

Continuous Feature Output Class
1.0 Yes
1.0 Yes
2.0 No
3.0 Yes
3.0 No

As is, the dataset has an Entropy of H = - 0.6 x Log (0.6) – 0.4 x Log (0.4) = 0.67 (5 examples, with 3/5 Yes, and 2/5 No).

The Continuous Feature takes 3 values: 1.0, 2.0 and 3.0, which leaves us with 2 possible splits: strictly less than 2, or strictly less than 3. Suppose we split on 2.0 – we would get 2 groups. Group 1 contains Examples where the Feature is less than 2:

Continuous Feature Output Class
1.0 Yes
1.0 Yes

The Entropy of Group 1 is H(g1) = - 1.0 x Log(1.0) = 0.0

Group 2 contains the rest of the examples:

Continuous Feature Output Class
2.0 No
3.0 Yes
3.0 No

The Entropy of Group 2 is H(g2) = - 0.33 x Log(0.33) – 0.66 x Log(0.66) = 0.63

Partitioning on 2.0 gives us a gain of H – 2/5 x H(g1) – 3/5 x H(g2) = 0.67 – 0.4 x 0.0 – 0.6 x 0.63 = 0.04. That split gives us additional information on the output, which seems intuitively correct, as one of the groups is now formed purely of “Yes”. In a similar fashion, we can compute the information gain of splitting around the other possible value, 3.0, which would give us a gain of 0.67 – 0.6 x 0.63 – 0.4 x 0.69 =  - 0.00: that split doesn’t improve information, so we would use the first split (or, if we had multiple splits with positive gain, we would take the split leading to the largest gain).

So why not just recursively apply that procedure, and split our dataset until we cannot achieve information gain by splitting further? The issue is that we might end up with an artificially fine-grained partition, over-fitting the data.


by Mathias 28. April 2013 09:32

In our previous post, we began exploring Singular Value Decomposition (SVD) using Math.NET and F#, and showed how this linear algebra technique can be used to “extract” the core information of a dataset and construct a reduced version of the dataset with limited loss of information.

Today, we’ll pursue our excursion in Chapter 14 of Machine Learning in Action, and look at how this can be used to build a collaborative recommendation engine. We’ll follow the approach outlined by the book, starting first with a “naïve” approach, and then using an SVD-based approach.

We’ll start from a slightly modified setup from last post, loosely inspired by the Netflix Prize. The full code for the example can be found here on GitHub.

The problem and setup

In the early 2000s, Netflix had an interesting problem. Netflix’s business model was simple: you would subscribe, and for a fixed fee you could watch as many movies from their catalog as you wanted. However, what happened was the following: users would watch all the movies they knew they wanted to watch, and after a while, they would run out of ideas – and rather than search for lesser-known movies, they would leave. As a result, Netflix launched a prize: if you could create a model that could provide users with good recommendations for new movies to watch, you could claim a $1,000,000 prize.

Obviously, we won’t try to replicate the Netflix prize here, if only because the dataset was rather large; 500,000 users and 20,000 movies is a lot of data… We will instead work off a fake, simplified dataset that illustrates some of the key ideas behind collaborative recommendation engines, and how SVD can help in that context. For the sake of clarity, I’ll be erring on the side of extra-verbose.

Our dataset consists of users and movies; a movie can be rated from 1 star (terrible) to 5 stars (awesome). We’ll represent it with a Rating record type, associating a UserId, MovieId, and Rating:

type UserId = int
type MovieId = int
type Rating = { UserId:UserId; MovieId:MovieId; Rating:int }

To make our life simpler, and to be able to validate whether “it works”, we’ll imagine a world where only 3 types of movies exist, say, Action, Romance and Documentary – and where people have simple tastes: people either love Action and hate the rest, love Romance or hate the rest, or love Documentaries and hate the rest. We’ll assume that we have only 12 movies in our catalog: 0 to 3 are Action, 4 to 7 Romance, and 8 to 11 Documentary.


by Mathias 14. April 2013 12:20

Last Thursday, I gave a talk at the Bay.NET user group in Berkeley, introducing F# to C# developers. First off, I have to thank everybody who came – you guys were great, lots of good questions, nice energy, I had a fantastic time!

My goal was to highlight why I think F# is awesome, and of course this had to include a Type Provider demo, one of the most amazing features of F# 3.0. So I went ahead, and demoed Tomas Petricek’s World Bank Type Provider, and Howard Mansell’s R Type Provider – together. The promise of Type Providers is to enable information-rich programming; in this case, we get immediate access to a wealth of data over the internet, in one line of code, entirely discoverable by IntelliSense in Visual Studio - and we can use all the visualization arsenal of R to see what’s going on. Pretty rad.

Rather than just dump the code, I thought it would be fun to turn that demo into a video. The result is a 7 minutes clip, with only minor editing (a few cuts, and I sped up the video x3 because the main point here isn’t how terrible my typing skills are). I think it’s largely self-explanatory, the only points that are worth commenting upon are:

  • I am using a NuGet package for the R Type Provider that doesn’t officially exist yet. I figured a NuGet package would make that Type Provider more usable, and spent my week-end creating it, but haven’t published it yet. Stay tuned!
  • The most complex part of the demo is probably R’s syntax from hell. For those of you who don’t know R, it’s a free, open-source statistical package which does amazingly cool things. What you need to know to understand this video is that R is very vector-centric. You can create a vector in R using the syntax myData <- c(1,2,3,4), and combine vectors into what’s called a data frame, essentially a collection of features. The R type provider exposes all R packages and functions through a single static type, aptly named R – so for instance, one can create a R vector from F# by typing let myData = R.c( [|1; 2; 3; 4 |]).

That’s it! Let me know what you think, and if you have comments or questions.


Comment RSS