A client asked me recently a fun probability question, which revolved around figuring out the probability of success of a research program. In a simplified form, here is the problem: imagine that you have multiple labs, each developing products which have independent probabilities of succeeding – what is the probability of more than a certain number of products being eventually successful?

Let’s illustrate on a simple example. Product A has a 30% probability of success, and product B a 60% probability of success. Combining these into a probability tree, we work out that there is an 18% chance of having 2 products successful, 18% + 12 % + 42% = 72% chance of having 1 or more products succeed, and 28% chances of a total failure.

It’s not a very complicated theoretical problem. Practically, however, when the number of products increases, the number of outcomes becomes large, fairly fast – and working out every single combination by hand is extremely tedious.

Fortunately, using a simple trick, we can generate these combinations with minimal effort. The representation of integers in base 2 is a decomposition in powers of 2, resulting in a unique sequence of 0 and 1. In our simplified example, if we consider the numbers 0, 1, 2 and 3, their decomposition is

0 = 0 x 2^2 + 0 x 2^1 –> 00

1 = 0 x 2^2 + 1 ^ 2^1 –> 01

2 = 1 x 2^2 + 0 x 2^1 –> 10

3 = 1 x 2^2 + 1 x 2^2 –> 11

As a result, if if consider a 1 to encode the success of a product, and a 0 its failure, the binary representation of integers from 0 to 3 gives us all possible outcomes for our two-products scenario.

## Comments

- Read the contents of a worksheet with C# (28)
- Create an Excel 2007 VSTO add-in: adding a WPF control (14)
- Management, the Gordon Ramsay way (4)
- How dense is the product of Sparse Matrices? (5)

Comment RSSDewayne wrote: Wonderful beat ! I would like to apprentice while ... [More]

Healthy Weight Loss Tips After Pregnancy wrote: This could possibly be enough to help you fit comf... [More]

maximum shred reviews wrote: You really make it seem so easy with your presenta... [More]

How To Reverse Aging wrote: Hello, I enjoy reading all of your article. I want... [More]