My favorite column in MSDN Magazine is Test Run; it was originally focused on testing, but the author, James McCaffrey, has been focusing lately on topics revolving around numeric optimization and machine learning, presenting a variety of methods and approaches. I quite enjoy his work, with one minor gripe –his examples are all coded in C#, which in my opinion is really too bad, because the algorithms would gain much clarity if written in F# instead.

Back in June 2013, he published a piece on Amoeba Method Optimization using C#. I hadn’t seen that approach before, and found it intriguing. I also found the C# code a bit too hairy for my feeble brain to follow, so I decided to rewrite it in F#.

In a nutshell, the Amoeba approach is a heuristic to find the minimum of a function. Its proper respectable name is the Nelder-Nead method. The reason it is also called the Amoeba method is because of the way the algorithm works: in its simple form, it starts from a triangle, the “Amoeba”; at each step, the Amoeba “probes” the value of 3 points in its neighborhood, and moves based on how much better the new points are. As a result, the triangle is iteratively updated, and behaves a bit like an Amoeba moving on a surface.

Before going into the actual details of the algorithm, here is how my final result looks like. You can find the entire code here on GitHub, with some usage examples in the Sample.fsx script file. Let’s demo the code in action: in a script file, we load the Amoeba code, and use the same function the article does, the Rosenbrock function. We transform the function a bit, so that it takes a Point (an alias for an Array of floats, essentially a vector) as an input, and pass it to the solve function, with the domain where we want to search, in that case, [ –10.0; 10.0 ] for both x and y:

#load "Amoeba.fs" open Amoeba open Amoeba.Solver let g (x:float) y = 100. * pown (y - x * x) 2 + pown (1. - x) 2 let testFunction (x:Point) = g x.[0] x.[1] solve Default [| (-10.,10.); (-10.,10.) |] testFunction 1000

Running this in the F# interactive window should produce the following:

val it : Solution = (0.0, [|1.0; 1.0|])

>

The algorithm properly identified that the minimum is 0, for a value of x = 1.0 and y = 1.0. Note that results may vary: this is a heuristic, which starts with a random initial amoeba, so each run could produce slightly different results, and might at times epically fail.

## Comments

- Create an Excel chart in C# without worksheet data (3)
- Read Excel VBA macros and functions through C# (30)
- Using FSI to execute F# code from a .NET app (8)
- Excel ScatterPlot with labels, colors and markers (29)

Comment RSSgopro hero 4 release date 2014 wrote: All the different styles of Chaco adventure sandal... [More]

identity theft protection tips wrote: Hello! I could have sworn I've been to this site b... [More]

Dave Thomas wrote: If anyones interested I wrote a couple of article ... [More]

Ron wrote: Mathias, That was just what I was looking for. T... [More]