Mathias Brandewinder on .NET, F#, VSTO and Excel development, and quantitative analysis / machine learning.
by Mathias 12. May 2015 13:50

As much as we people who write code like to talk about code, the biggest challenge in a software project is not code. A project rarely fails because of technology – it usually fails because of miscommunications: the code that is delivered solves a problem (sometimes), but not the right one. One of the reasons we often deliver the wrong solution is that coding involves translating the world of the original problem into a different language. Translating one way is hard enough as it is, but then, rarely are users comfortable with reading and interpreting code – and as a result, confirming whether the code “does the right thing” is hard, and errors go un-noticed.

This is why the idea of Ubiquitous Language, coined by Eric Evans in his Domain Driven Design book, always appealed to me. The further apart the languages of the domain expert and the code are, the more likely it is that something will be lost in translation.

However, achieving this perfect situation, with “a language structured around the domain model and used by all team members to connect all the activities of the team with the software” [source], is hard. I have tried this in the past, mainly through tests. My idea at the time was that tests, especially BDD style, could perhaps provide domain experts with scenarios similar enough to their worldview that they could serve as a basis for an active dialogue. The experience wasn’t particularly successful: it helped some, but in the end, I never got to the point where tests would become a shared, common ground (which doesn’t mean it’s not possible – I just didn’t manage to do it).

Fast forward a bit to today – I just completed a project, and it’s the closest I have ever been to seeing Ubiquitous Language in action. It was one of the most satisfying experiences I had, and F# had a lot to do with why it worked.

The project involved some pretty complex modeling, and only two people – me and the client. The client is definitely a domain expert, and on the very high end of the “computer power user” spectrum: he is very comfortable with SQL, doesn’t write software applications, but has a license to Visual Studio and is not afraid of code.

The fact that F# worked well for me isn’t a surprise – I am the developer in that equation, and I love it, for all the usual technical reasons. It just makes my life writing code easier. The part that was interesting here is that F# worked well for the client, too, and became our basis for communication.

What ended up happening was the following: I created a GitHub private repository, and started coding in a script file, fleshing out a domain model with small, runnable pieces of code illustrating what it was doing. We would have regular Skype meetings, with a screen share so that I could walk him through the code in Visual Studio, and explain the changes I made - and we would discuss. Soon after, he started to run the code himself, and even making small changes here and there, not necessarily the most complicated bits, but more domain-specific parts, such as adjusting parameters and seeing how the results would differ. And soon, I began receiving emails containing specific scenarios he had experimented with, using actual production data, and pointing at possible flaws in my approach, or questions that required clarifications.

So how did F# make a difference? I think it’s a combination of at least 2 things: succinctness, and static typing + scripts. Succinctness, because you can define a domain with very little code, without loosing expressiveness. As a result, the core entities of the domain end up taking a couple of lines at the top of a single file, and it’s easy to get a full picture, without having to navigate around between files and folders, and keep information in your head. As an illustration, here is a snippet of code from the project:

type Window = { Early:DateTime; Target:DateTime; Late:DateTime }

type Trip = { 
    ID:TripID
    Origin:Location
    Destination:Location
    Pickup:Window
    Dropoff:Window
    Dwell:TimeSpan }

type Action = 
    | Pickup of Trip 
    | Dropoff of Trip
    | CompleteRoute of Location

This is concise, and pretty straightforward – no functional programming guru credentials needed. This is readable code, which we can talk about without getting bogged down in extraneous details.

The second ingredient is static typing + scripts. What this creates is a safe environment for experimentation.  You can just change a couple of lines here and there, run the code, and see what happens. And when you break something, the compiler immediately barks at you – just undo or fix it. Give someone a running script, and they can start playing with it, and exploring ideas.

In over 10 years writing code professionally, I never had such a collaborative, fruitful, and productive interaction cycle with a client. Never. This was the best of both worlds – I could focus on the code and the algorithms, and he could immediately use it, try it out, and send me invaluable feedback, based on his domain knowledge. No noise, no UML diagrams, no slides, no ceremony – just write code, and directly communicate around it, making sure nothing was amiss. Which triggered this happy tweet a few weeks back:

We were looking at the code together, and my client spotted a domain modeling mistake, right there. This is priceless.

As a side-note, another thing that is priceless is “F# for Fun and Profit”. Scott Wlaschin has been doing an incredible work with this website. It’s literally a gold mine, and I picked up a lot of ideas there. If you haven’t visited it yet, you probably should.

by Mathias 3. May 2015 16:34

I got curious the other day about how to measure the F# community growth, and thought it could be interesting to take a look at this through StackOverflow. As it turns out, it’s not too hard to get some data, because StackExchange exposes a nice API, which allows you to make all sorts of queries and get a JSON response back.

As a starting point, I figured I would just try to get the number of questions asked per month. The API allows you to retrieve questions on any site, by tag, between arbitrary dates. Responses are paged: you can get up to 100 items per page, and keep asking for next pages until there is nothing left to receive. That sounds like a perfect job for the FSharp.Data JSON Type Provider.

First things first, we create a type, Questions, by pointing the JSON Type Provider to a url that returns questions; based on the structure of the JSON document it receives, the Type Provider creates a type, which we will then be able to use to make queries:

#I"../packages"
#r @"FSharp.Data.2.2.0\lib\net40\FSharp.Data.dll"
open FSharp.Data
open System

[<Literal>]
let sampleUrl = "https://api.stackexchange.com/2.2/questions?site=stackoverflow"
type Questions = JsonProvider<sampleUrl>

Next, we’ll need to grab all the questions tagged F# between 2 given dates. As an example, the following would return the second page (questions 101 to 200) from all F# questions asked between January 1, 2014 and January 31, 2015:

https://api.stackexchange.com/2.2/questions?page=2&pagesize=100&fromdate=1420070400&todate=1422662400&tagged=F%23&site=stackoverflow

There are a couple of quirks here. First, the dates are in UNIX standard, that is, the number of seconds elapsed from January 1, 1970. Then, we need to keep pulling pages, until the response indicates that there are no more questions to receive, which is indicated by the HasMore property. That’s not too hard: let’s create a couple of functions, first to convert a .NET date to a UNIX date, and then to build up a proper query, appending the page and dates we are interested in to our base query – and finally, let’s build a request that recursively calls the API and appends results, until there is nothing left:

let fsharpQuery = "https://api.stackexchange.com/2.2/questions?site=stackoverflow&tagged=F%23&pagesize=100"

let unixEpoch = DateTime(1970,1,1)
let unixTime (date:DateTime) = 
    (date - unixEpoch).TotalSeconds |> int64

let page (page:int) (query:string) = 
    sprintf "%s&page=%i" query page
let between (from:DateTime) (``to``:DateTime) (query:string) = 
    sprintf "%s&&fromdate=%i&todate=%i" query (unixTime from) (unixTime ``to``)

let questionsBetween (from:DateTime) (``to``:DateTime) =
    let baseQuery = fsharpQuery |> between from ``to``
    let rec pull results p = 
        let nextPage = Questions.Load (baseQuery |> page p)
        let results = results |> Array.append nextPage.Items
        if (nextPage.HasMore)
        then pull results (p+1)
        else results
    pull Array.empty 1

And we are pretty much done. At that point, we can for instance ask for all the questions asked in January 2015, and check what percentage were answered:

let january2015 = questionsBetween (DateTime(2015,1,1)) (DateTime(2015,1,31))

january2015 
|> Seq.averageBy (fun x -> if x.IsAnswered then 1. else 0.)
|> printfn "Average answer rate: %.3f"

… which produces a fairly solid 78%.

If you play a bit more with this, and perhaps try to pull down more data, you might experience (as I did) the Big StackExchange BanHammer. As it turns out, the API has usage limits (which is totally fair). In particular, if you ask for too much data, too fast, you will get banned from making requests, for a dozen hours or so.

This is not pleasant. However, in their great kindness, the API designers have provided a way to avoid it. When you are making too many requests, the response you receive will include a field named “backoff”, which indicates for how many seconds you should back off until you make your next call.

This got me stumped for a bit, because that field doesn’t show up by default on the response – only when you are hitting the limit. As a result, I wasn’t sure how to pass that information to the JSON Type Provider, until Max Malook helped me out (thanks so much, Max!). The trick here is to supply not one sample response to the type provider, but a list of samples, in that case, one without the backoff field, and one with it.

I carved out an artisanal, hand-crafted sample for the occasion, along these lines:

[<Literal>]
let sample = """
[{"items":[
   {"tags":["f#","units-of-measurement"],//SNIPPED FOR BREVITY}],
   "has_more":false,
   "quota_max":300,
   "quota_remaining":294},
 {"items":[
   {"tags":["f#","units-of-measurement"],//SNIPPED FOR BREVITY}],
   "has_more":false,
   "quota_max":300,
   "quota_remaining":294,
   "backoff":10}]"""

type Questions = JsonProvider<sample,SampleIsList=true>

… and everything is back in order – we can now modify the recursive request, causing it to sleep for a bit when it encounters a backoff. Not the cleanest solution ever, but hey, I just want to get data here:

let questionsBetween (from:DateTime) (``to``:DateTime) =
    let baseQuery = fsharpQuery |> between from ``to``
    let rec pull results p = 
        let nextPage = Questions.Load (baseQuery |> page p)
        let results = results |> Array.append nextPage.Items
        if (nextPage.HasMore)
        then
            match nextPage.Backoff with
            | Some(seconds) -> System.Threading.Thread.Sleep (1000*seconds + 1000)
            | None -> ignore ()
            pull results (p+1)
        else results
    pull Array.empty 1

So what were the results? I decided, quite arbitrarily, to count questions month by month since January 2010. Here is how the results looks like:

StackOverflow

Clearly, the trend is up – it doesn’t take an advanced degree in statistics to see that. It’s interesting also to see the slump around 2012-2013; I can see a similar pattern in the Meetup registration numbers in San Francisco. My sense is that after a spike in interest in 2010, when F# launched with Visual Studio, there hasn’t been much marketing push for the language, and interest eroded a bit, until serious community-driven efforts took place. However, I don’t really have data to back that up – this is speculation.

How this correlates to overall F# adoption is another question: while I think this curves indicates growth, the number of questions on StackOverflow is clearly a very indirect measurement of how many people actually use it, and StackOverflow itself is a distorted sample of the overall population. Would be interesting to take a similar look at GitHub, perhaps…

by Mathias 1. May 2015 16:14

About a month ago, I vaguely recall a discussion on Twitter – if memory serves me, @rickasaurus was involved – around sharing articles. This inspired me to try something. Every morning, I start my day with an espresso first, followed by reading blog posts for half an hour or so. While I get a lot from these quick reading sessions, I rarely go back to the material afterwards, and thought it would be interesting to keep track of a few, and revisit them at the end of the month. I also decided I would primarily focus on slightly out-of-topic areas, that is, pieces with ideas loosely connected to my daily work, but which I found inspiring or stimulating.

Long story short – here is a collection of links I found interesting this month, with minimal commentary on why I found them interesting. I also tried to mention the source when I remembered it; I am always curious to hear how people come across information, I figured others might be interested in my sources.

Lovers and liars: How many sex partners have you really had?

Since my days studying decision analysis, I have been interested by the topic of heuristics and biases, that is, what strategies we use to process information and form decisions – and how far we are from “rational agents”. There is a lot of food for thought in this experiment; one bit I found intriguing was the suggestion that gender had an influence on what strategy is used to produce an estimate, I wish there was more about that.

The best and worst times to have your case reviewed by a judge

Decision making again. I love a well-designed experiment – in this case, the whole story is there, in just one simple chart. Also a reminder that taking regular snacks during your workday is important.  

What is the most efficient algorithm to check if a number is a Fibonacci Number? [via @hammett]

Because every functional programmer loves a Fibonacci sequence :)

Captivating Geometric GIFs by Florian de Looijby [via @ptrelford]

Beautiful – I need to look into how one creates gifs programmatically!

Data science done well looks easy - and that is a big problem for data scientists [via @tggleeson]

An interesting discussion on a topic that has been in the back of my mind for a bit: the discourse around data science / machine learning tends to emphasize fancy techniques and algorithm, and not the data work, even though it is an essential part of the job.

Donut math: how donut.c works [via @flangy]

No comment – pure awesome.

Are we kidding ourselves on competition?

A provocative and intriguing argument: rational investors should diversify, and as a result, firms that act in the best interest of their shareholders have an incentive to avoid competition and collude.

Hacking an epic NHL goal celebration with a hue light show and real-time machine learning [via @rasbt]

Love it – a gross misuse of brain and computer power, and a very interesting machine learning project.

Parasitic populations solve algorithm problems in half the time

I have a long-standing fascination for optimization techniques that mimic the behavior of populations, mixed together with randomness (ant colonies, bee colonies, swarms…). The idea to introduce a parasite in the system to preserve diversity (and avoid concentrating all the resources on one single search region, I presume) sounds really interesting, I just wish the full article was available – the link merely hints at the idea.

That’s it for April – I’ll keep doing this for myself anyways, if anybody is interested, I’ll be happy to post these once a month.

Comments

Comment RSS